

GEO-ENGINEERING TECHNIQUES FOR UNSTABLE SLOPES

Group 4 Presentation

Shallow Landslide Simulation

- What is a "Landslide"?
- Landslide Types
- Landslide Parts

• Experiment 0

• Experiment 1

---- Experiment 0 ---- Experiment 1

Author: Group 4

		Area [m ²]	1.6				
		N sprinklers	4	6	4	6	
I	Pressure	Discharge	Inte	ensity [mm/h]	Intensit	y [m/min]	
	0.5	0.22	33.0	49.5	0.000549938	0.000824906	
	0.6	0.24	35.9	53.8	0.00059828	0.00089742	
	0.7	0.26	38.7	58.0	0.000644958	0.000967436	
	0.8	0.28	41.4	62.1	0.00068997	0.001034955	
	0.9	0.29	44.0	66.0	0.000733318	0.001099976	
	1	0.31	46.5	69.8	0.000775	0.0011625	
	1.1	0.33	48.9	73.4	0.000815018	0.001222526	
	1.2	0.34	51.2	76.8	0.00085337	0.001280055	
	1.3	0.36	53.4	80.1	0.000890058	0.001335086	
	1.4	0.37	55.5	83.3	0.00092508	0.00138762	
	1.5	0.38	57.5	86.3	0.000958438	0.001437656	
	1.6	0.40	59.4	89.1	0.00099013	0.001485195	
	1.7	0.41	61.2	91.8	0.001020158	0.001530236	
	1.8	0.42	62.9	94.4	0.00104852	0.00157278	

Author: Group 4

List of Anomalies

Geophysical Assessment			Photogrammetry Assessment		Geophysical Assessment	
Anomaly No.	Exp. Equipment	Time	Fracture ID	Time	Measurement ID	Time
1	TDR Exp.1	24-26	Fracture 2	24:10	T5 T6	22 27
2	TDR Exp.1	27-29	Fracture 3 Fracture 4 Fracture 5	27:09 27:50 28:20	Тб	27
3	TDR Exp.1	31-33	Fracture 7 Fracture 8	31:00 30:50	T 7	33
4	TDR Exp.1	38-40	Fracture 9 Fracture 10 Fracture 11 Fracture 12 Fracture 13 Fracture 14	38:10 37:00 37:30 38:00 39:30 30:45	T9 T10	37 39
5	TDR Exp.0	35			T6	33
6	Tensiometer Exp. 1	0.235	Same anomaly as No.4			
7 Arduino Exp. 1		15	Same anomaly as No. 4			

Table 3. List of Anomalies and Related Information

Anomaly 4, 6, & 7, Photogrammetry

Anomaly 4, 6, & 7, Geophysics

- Statistical Models
- Physical Models
- SLIP model
 - Limit Equilibrium Method
 - 2 sub-layers

$$F_{s} = \frac{T_{s}}{T_{d}}$$
$$T_{s} = N' + tan\varphi' + C'$$
$$T_{d} = W'Sin\beta + F'$$

- 4-minute Inaccuracy due to Limitations
 - Neglecting the run-off water
 - Considering Uniform Layer

SLIP Model Limitation (Run-off Water)

- Sensitivity Analysis for Different Amounts of Run-off
 - 75% Infiltration, 25% Run-off
 - Confirmed with Collected Run-off Water

SLIP Model Limitation (Uniform Layer)

• Default Limit Equilibrium Equation

$$W' = \cos\beta * H * \Delta s * \gamma_w [m(n-1) + \cos(1-n) + nS_r(1-m)]$$

$$N' = \cos^2\beta * H * \Delta s * \gamma_w [m(n-1) + \cos(1-n) + nS_r(1-m)]$$

• Modified Limit Equilibrium Equation

$$\begin{split} W' &= (\cos\beta*\ 0.5\ *H\ *\Delta s\ *\gamma_w[m(n-1)+\cos(1-n)+nS_r(1-n)]) + \\ (\cos\beta*\ 0.5\ *H\ *\Delta s\ *\gamma_w[m(0.85\ *n-1)+\cos(1-0.85\ *n)+0.85\ *nS_r(1-m)]) \end{split}$$

$$N = (\cos^2\beta * 0.5 * H * \Delta s * \gamma_w [m(n-1) + \cos(1-n) + nS_r(1-n)]) + (\cos^2 2 * 0.5 * H * \Delta s * \gamma_w [m(0.85 * n - 1) + \cos(1 - 0.85 * n) + 0.85 * nS_r(1-m)])$$

Suggestions for Better Experiment

> Photogrammetry

- Definition of Photogrammetry
- Uses of Photogrammetry in Landslide Experiment

• Point cloud of the Landslide

• 2-D Digital Image Correlation

• Structure for Motion

• Terrestrial Laser Scanner data

• 2D Digital Image Correlation

GSD PARAMETERS

GSD=0.6325 [MM/PIX]

GRID SELECTION

335 348 361 374 387 400 413 426 439		and the second	
2473144852649739505505505216253374545865579956910 122 134 146 158 170 191 202 213 224 336 349 362 375 388 401 414 427 440	235 246 2	257 268	
3474 ¹⁵ 488 ²⁷ 498 ³⁹ 510 ⁵¹ 522 ⁶³ 534 ⁷⁵ 54 ⁶⁸⁷ 55 ⁶⁹ 570 ¹¹ 123 135 147 159 333 334 192 203 214 225 3 337 350 363 376 389 402 415 428 441	236 247 2	258 269 279	-
447516487284994051152523645357654788559007112 124 136 148 160 171 181 193 204 215 226 3 338 351 364 377 390 403 416 429 442	237 248 2	259 270 280	Í
5476174882950041512535246553677548895600157213 125 137 149 161 172 182 194 205 216 227 : 339 352 365 378 391 404 417 430 443	238 249 2	260 271 281	
64771848930501425135452565377854990561027314 126 138 150 162 173 183 195 206 217 228 3 340 353 366 379 392 405 418 431 444	239 250 2	261 272 282	
747819490315024351455526875387955091562037415 127 139 151 163 174 184 196 207 218 229 3 341 354 367 380 393 406 419 432 445	240 251 2	262 273 283	
8479204913250344515565276853980551925630457516 128 140 152 164 175 185 197 208 219 230 : 342 355 368 381 394 407 420 433 446	241 252 2	263 274 284	
948021492335044551657528695408155293564057617 129 141 153 165 176 186 198 209 220 231 : 343 356 369 382 395 408 421 434 447	242 253 2	264 275 285	
1048122493345034501758529705418255394566087718 130 142 154 166 177 187 199 210 221 232 3 344 357 370 383 396 409 422 435 448	243 254 2	265 276 286	
1482234943550647518595307154283554955660757819 131 143 155 167 178 188 200 211 222 233 2 345 358 371 384 397 410 423 436 449	244 255 2	266 277 287	1
12483244953650748519605317254384555965610\$7920 132 144 156 168 179 189 201 212 223 234 2584 6238592372238552366324523050307 309 311 313 315 317 319 321 323 325 32 452 452 454 466 466 470	245 256 2 7 329 33	267 278 288	
29947292602947329466295930002304253948630461308 310 312 314 316 318 320 322 324 326 32 453 455 457 459 461 463 465 467 469 471	8 330 33	2	

Author: Group 4

Experiment 1 Results

Author: Group 4

Displacement Results

FRACTURE 13

Author: Group 4

Velocity Results

Author: Group 4

3D Image Displacement

Displacement versus x-y-position (Current image #: 173)

Author: Group 4

Failure Phases

+					
	Fracture	Electrode	VWC	VWC	
	Number	Number	(Geophysics)	(Geology)	
	Fracture 2	1	0.36	0.2975	
	Fracture 3	3	0.45	0.3201	
	Fracture 4	24	0.31	0.3284	

Author: Group 4

Experiment 0 vs Experiment 1

Surface for Motion

3D IMAGE GENERATION

Cameras Calibration

Carner	Camera type:					Frame				Ŧ
Pixel si	ze (mm):					0.00345		× 0.00	345	
Focal l	Focal length (mm):					3				
Rolling	shutter compensation:					Disabled				Ŧ
F	Film camera with fiducial marks									
Initia	Adjusted Bands	GPS/INS Offset								
Туре		Precalibrated	Ŧ							
				OC:	-24.0	753				
f:	656.151913			cy:	-22.5	855				
k1:	-0.00323497			p1:	-0.00	0127756				
k2:	0.00602171			p2:	0.000	509693				
k3:	-0.00175929			b1:	0					
k4:	0			b2:	0					
Fixe	d parameters:	All					S	ielect		
Imag	ge-variant parameters:	None					S	ielect		

• Photo Alignments

Author: Group 4

3D Image for Fracture 8

Orthophotos for Fracture 7

Orthophotos

Fig.73. Displacement as measured for fracture 7 from 2D DIC

Author: Group 4

Laser Scanner Data

• Filtering

Geo-referencing

Author: Group 4

Volume Computation

Normal Vectors

Volume Computation

 \sim

-

Distance Difference Computation

-0.070062 -0.105093 -0.140124

Author: Group 4

Early Warning System

+					
	Fracture	Electrode	VWC	VWC	
	Number	Number	(Geophysics)	(Geology)	
	Fracture 2	1	0.36	0.2975	
	Fracture 3	3	0.45	0.3201	
	Fracture 4	24	0.31	0.3284	

VWV: 0.18

4 minutes in between

Lead Time: 5 Minutes before minor fractures

Lead Time: 9 Minutes before the more medicore fractures

- DC resistivity method
- Electrical Resistivity Tomography(ERT)
- Wenner array

Resistivity Model in Experiment 1

T2 at 6 min

T3 at 11 min

T4 at 17 min

Phenomenon:

1.whole slope resistivity of soil is **decreasing**, especially the toe of the slope

2.the decrease in soil resistivity wasn't in a smooth trend.

Analysis for Resistivity Model of Software

T6 at 27 min

T10 at 39 min

Phenomenon:

1.the soil resistivity began to **increase in the crown part** meanwhile the **toe part kept decreasing.**

2.in the increasing part, the resistivity is still **smaller than 200\Omegam**, we cannot consider it as the real crack but only the zones of different saturation.

Mathematical Resistivity Model

Why?

- 1. not uniformly compacted soil
- 2. the flaws that happened in this experiment is that the crack position is too far from electrodes.
- 3. during the experiment, the time when we tested the resistivity from the electrodes is not completely accurate compared with the time measuring porosity and volumetric water content for geology parts. Because the parts is operated by different people.

Author: Group 4

Vater Saturation vs. Resistivity

As a result, we developed the following equation to obtain the water saturation of the landslide body from inverted resistivity data :

 $S_w = (\frac{29.43}{\rho})^{0.83}$

dry sand to the water saturation of about 30%-40%, the resistivity values **rapidly decrease** from $500\Omega m$ to $100\Omega m$ approximately .

when water saturation beyond about 40%, the resistivity **decreases softly and gently**.

Until the soil is almost **full of water**, the **resistivity is getting closer to zero.**

From the graph we can easily observe that **resistivity is always decrease while the water saturation increasing**, but the relationship between the two isn't linear.

Resistivity Model in Experiment 0

T5 at 28 min

Phenomenon:

other parts resisitivity is decreasing ,while in T6 we can easily find that resistivity is increasing and over $200\Omega m$

To conclude, it's obvious that the results obtained from geology, photogrammetry and geophysics were supplementary to each other. Author: Group 4

Figure 3. Family 2

Figure 2. Family 1

Figure 4. Family 3

Author: Group 4

Instruments

Author: Group 4

Rockmass Characterizations

- Joint Orientation and Data Processing
- Joint Spacing
- Intercept
- Water presence
- Infill
- Persistence
- Weathering
- Estimation of the Joint Roughness Coefficient (JRC).
- Joint Compressive Strength (JCS)
- Rock Quality Designation (RQD)
- Aperture

Aperture is the perpendicular distance separating the adjacent rock walls of an open discontinuity, in which the intervening space is air or water filled. A classification of aperture is shown in table [5.]. Moreover, the measure of aperture between discontinuities of all 3 families demonstrate very wide or open as it shown in the table [6.].

Table 1. Classification of the separation of joints (ISRM, 1978). Table 2. Aperture of joint sets

Term	Separation
Very tight	<0.1 mm
Tight	0.1 – 0.5 mm
Moderately	0.5 – 2.5 mm
Open	2.5 – 10 mm
Very open	10 – 25 mm
Wide	>10 mm
Very wide	1 – 10 cm
Extremely wide	10 – 100 cm
Cavernous	>1 m

Aperture	Classification
<1 mm	Very tight
<1 mm	Very tight
<1 mm	Very tight
	Aperture <1 mm <1 mm <1 mm

Joint Families

Author: Group 4

Kinematic analysis: Circular and Planar Failure

Figure 18. Poles of All Joint Sets

K1	36	324
K2	44	63
K3	26	170
slope	63	134
Friction angle	3	5

Figure 19. Mean orientation of joint sets, slope and friction angle in Stereonet

Planar failure	K1	K2	К3
Condition 1	yes	yes	yes
Condition 2	no	no	no
Condition 3	yes	yes	no
Condition 4	yes	no	no

POLITECNICO DI MILANO

Kinematic analysis: wedge failure and Toppling

Figure 19. Mean orientation of joint sets, slope and friction angle in Stereonet

Wedge failure	K1 & K2	K2 & K3	K1 & K3
Intersection line/ dip	29	21	8
Condition 1	yes	yes	yes
Condition 2	no	no	no
Condition 3	no	no	no

Toppling	K1	K2	К3
Condition 1	no	no	no
Condition 2	no	yes	no

Author: Group 4

Block volume estimation

Persistence Reduction:

 $S1 \times S2 \times S3$

Table 22. Classification of block volume suggested by Palmstrom (1995)

Figure 20. Representation of angles between discontinuities

Author: Group 4

Safety distance evaluation of rockfall

Ra= 9.98 Vb $^{0.33}$

We have considered the safety distance for three block volume:

Size	Volume (cm3)	Safety distance (Ra) (cm)
Average	759.89	88.9
Minimum	61	38.72
Maximum	3932	153

Table 23. Safety Distance of Blocks

Additionally, we have calculated the X distance (the reachable distance of the block from the position of its detachment) for the three values of the Vb, while considering an assumption of an average height of 1m for the elevation of the rock.

Log(x) = Log(H) - 0.664 + 0.1529 Log(V)

Vb(Size)	X(cm)	Ra(cm)
Average	59	88.9
Minimum	40	38.60
Maximum	76.84	153

Table 24. Safety Distance of Blocks

Field Trip Photogrammetry

Author: Group 4

3D models of the Rock Surface

Families Location

Kd-tree cells fusion pa	rame	ters				
Max angle	10.0	10.00 deg.				
Max relative distance	0.30	0				
Facets						
Max RMS	\sim	0.010				
Min points per facet		500				
Max edge length		0.50				

The dip and dip direction Software and In-situ

	In	-Situ	Sof	Ìtware	Diff	ference	Av	erage
Family	dip	dip direction	dip	dip direction	dip	dip direction	dip	dip direction
Family 1	29	338	29	328	0	10		
	37	343	37	342	0	1		
	36	324	35	322	1	2	0,4	2,6
	38	317	37	317	1	0		
	44	306	44	306	0	0		
Family 2	53	62	54	68	1	6		
	38	50	36	56	2	6		
	51	64	51	60	0	4	0,6	7,4
	50	52	51	40	1	12		
	49	65	49	56	0	9		
Family	21	188	23	175	0	12		
	26	170	27	155	1	10		
	35	162	40	144	3	4	1,2	5,2
3	39	163	48	162	1	0		
	36	134	36	116	1	0		

Stereograms of Software and In-situ Results

Stereograms of Global Results

Field Trip Geophysics

- Ground-penetrating radar(GPR)
- IDS (3GHz) GeoRadar

Velocity is estimate using distance over time, during this process, we main use the metal shield to create the reflection with opposite polarity

Author

Time calibration

To calibrate the time scale so the time open the transmitting antennas is equal to 0

Bandpass filter

limit having sparse information ,select the range of frequencies

Gain

to amplify the defraction, to make the signal visible with the same amplitude with the background signal.

Background removal

Highlight the shallow signal which mask by background signal.

Envelope

remove the negative amplitudes from the profile by transforming waves with negative and positive oscillations into positive signals,

POLITECNICO DI MILANO

Profile 01 – family 1

1.Strong signal in depth 50cm shows a metal tie rod.

2.moderate joint-persistency, as discontinuities are quite far from each other.

Profile 02,03 – family 3

1.Not so strong signal in depth 15cm,maybe a metal or inner fracture.

2.a moderate joint-persistency, since discontinuities are short and far from each other

Profile 04 – family 2

1.signal is more horizontal and in low value because located in a less exposed place.

2.a low joint-persistency, since no evident discontinuity inside the rock.

Author: Group 4

A joint-persistency factor p is used for estimating our joint families:

$$p = \frac{L_j}{L_j + L_r}$$
, L_j : joint length, L_r : gap between joints

Joint family	Estimated joint- Persistancy (%)	Average joint- spacing (cm)
JF1	66%	5
JF3	68%	10

This parameter tells us the possibility of forming a line of crack inside the structure.

Just moderate joint-persistency.

In this project, a combination of various techniques and finally we finish our field trip.

Thank you!

Author